
  
 
 

 ARL-TR-7974 ● APR 2017 
 
 
 

 US Army Research Laboratory 

 
 
Frequency-Domain Characterization of Optic 
Flow and Vision-Based Ocellar Sensing for 
Rotational Motion 

 
by Nil Z Gurel, Joseph K Conroy, Timothy Horiuchi, and  
J Sean Humbert  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 
 
Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-7974 ● APR 2017 

 
 US Army Research Laboratory 

 
 
Frequency-Domain Characterization of Optic 
Flow and Vision-Based Ocellar Sensing for 
Rotational Motion 

 
by Nil Z Gurel 
Graduate Student, University of Maryland 
 
Joseph K Conroy  
Sensors and Electron Devices Directorate, ARL 
 
Timothy Horiuchi 
Associate Professor, University of Maryland  
 
J Sean Humbert 
Associate Professor, University of Colorado–Boulder  
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 
 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

April 2017 
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From – To) 4/1/2016-8/1/2016 

04/2016–07/2016 
4. TITLE AND SUBTITLE 

Frequency-Domain Characterization of Optic Flow and Vision-Based Ocellar 
Sensing for Rotational Motion 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Nil Z Gurel, Joseph K Conroy, Timothy Horiuchi, and J Sean Humbert 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 
ATTN: RDRL-SER-L 
2800 Powder Mill Rd 
Adelphi MD 20783-1132 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-7974 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

 
11. SPONSOR/MONITOR’S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for pubic release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 

The structure of an animal’s eye is determined by the tasks it must perform. While vertebrates rely on their 2 eyes for all 
visual functions, insects have evolved a wide range of specialized visual organs to support behaviors such as prey capture, 
predator evasion, mate pursuit, flight stabilization, and navigation. Compound eyes and ocelli constitute the vision-forming 
and sensing mechanisms of some flying insects. They provide signals useful for flight stabilization and navigation.  In contrast 
to the well-studied compound eye, the ocelli, seen as the second visual system, sense fast luminance changes and allow for 
fast visual processing. Using a luminance-based sensor that mimics the insect ocelli and a camera-based motion-detection 
system, frequency-domain characterization of an ocellar sensor and optic flow (due to rotational motion) is analyzed. Inspired 
by the insect neurons that make use of signals from both vision-sensing mechanisms, complementary properties of ocellar and 
optic flow estimates are discussed. 
 
15. SUBJECT TERMS 

Bio-inspired sensing, rotational motion sensing, vision-based sensing, micro air vehicles, unmanned aerial vehicles, ocelli 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

72 

19a. NAME OF RESPONSIBLE PERSON 

Joseph Conroy 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

301-394-2333 
 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited. 
iii 

Contents 

List of Figures v 

List of Tables viii 

1. Introduction 1 

1.1 Motivation 1 

1.2 Contributions 2 

2. Background 2 

2.1 Structure and Function of Compound Eye 2 

2.2 Structure and Function of Ocelli 4 

2.3 Prior Works Inspired by Insect Ocelli 5 

3. Frequency-Domain Characterization of Ocellar Sensor and Optic 
Flow 6 

3.1 Introduction 6 

3.2 Ocellar Sensor 7 

3.3 Mathematical Model for the Ocellar Sensor 12 

3.4 Optic Flow Computation 15 

3.5 Experimental Setup 18 

3.6 Magnitude-Squared Coherence 24 

3.7 Ground Truth 25 

3.8 Understanding Ocellar Sensor’s “Valid Range” 26 

3.9 Ocellar Sensor Frequency Characterization 29 

3.9.1 Circuit Frequency Characterization 29 

3.9.2 Sensor vs. Ground Truth Frequency Characterization 33 

3.10   Ocellar Sensor–Gyro Voltage-Velocity Mapping 35 

3.11  Performance-Related Parameters 36 

3.11.1  Frame Rate 36 

3.11.2 Window Size 38 

3.11.3 Feature Points 40 



 

Approved for public release; distribution is unlimited. 
iv 

3.11.4 Luminance Intensity 41 

3.11.5 Photodiode Bending 42 

3.12   Test Setup Limitations 43 

4. Sensor Fusion 44 

4.1 Biological Background for Sensor Fusion 44 

4.2 Fusion Approaches 45 

4.3 Previous Sensor Fusion Implementations 46 

4.4 Ocellar Sensor-Optic Flow Fusion Approach 47 

5. Conclusion and Future Work 52 

5.1 Conclusion 52 

5.2 Future Work 53 

6. References 55 

List of Symbols, Abbreviations, and Acronyms 61 

Distribution List 62 



 

Approved for public release; distribution is unlimited. 
v 

List of Figures 

Fig. 1 Insect compound eye and ocelli (image used with Wikimedia 
Commons permissions: 
https://commons.wikimedia.org/wiki/File:Polistes_ocelli.jpg) .............2 

Fig. 2 Structure of compound eye (image used with Wikimedia Commons 
permissions: 
https://commons.wikimedia.org/wiki/File:Insect_compound_eye_diagr
am.svg) ...................................................................................................3 

Fig. 3 Structure of ommatidium (image used with permission from 
Cronodon.com: http://cronodon.com/Copyright.html) ..........................3 

Fig. 4 Ocellus cross section (image used with Wikimedia Commons 
permissions: 
https://commons.wikimedia.org/wiki/File:Insect_ocellus_diagram.svg; 
see Ref. 16) ............................................................................................4 

Fig. 5 Circuit schematics of the 3-stage ocellar sensor. TSL14S photodiode 
outputs are band-pass filtered and antagonistically subtracted. Pitch 
rate (front–back) is inverted for sign change. ........................................8 

Fig. 6 Band-pass filter, with high-pass cutoff at 17 Hz and low-pass cutoff at 
145 Hz ....................................................................................................9 

Fig. 7 Subtractor and inverter: Subtractor is used for antagonistic subtraction 
of filtered signals. Inverter is used for sign change for pitch rate. For 
equal resistors in both blocks, direct subtraction and direct inversion is 
satisfied. ...............................................................................................10 

Fig. 8 Simulated circuit in TI TINA simulation software ..............................11 

Fig. 9 Band-pass filter simulation results: 13.78 Hz high-pass cutoff and 174 
Hz low-pass cutoff is observed. Phase starts at –90° at 1 mHz and 
reaches to –270° at 100 kHz. ...............................................................11 

Fig. 10 Mathematical model and assumptions: Photodiode in rotational motion 
sees the arbitrary luminance pattern as its azimuthal angle varies ......12 

Fig. 11 Optic flow vector for a pixel between 2 consecutive frames ...............16 

Fig. 12 Optic flow during rotational and translational motion: without 
translational component (V), optic flow is an estimate of only angular 
velocity (ω) ..........................................................................................19 

Fig. 13 Illustration of test setup: Light source has its own DC supply to avoid 
issues of flickering; information from camera, microcontroller unit 
(MCU), gyro, and analog-to-digital converter (ADC) are transferred to 
the host computer via a USB hub. .......................................................19 

Fig. 14 Camera scene (376 × 240 pixel image): DC light source is not in the 
FOV of the camera, which is moving along the x-direction ................20 



 

Approved for public release; distribution is unlimited. 
vi 

Fig. 15 Overall test setup: Ocellar sensor is positioned in front of light source. 
Motor is giving rotational motion to the setup along its shaft axis. The 
motor shaft is in vertical orientation, moving the components on it. ..21 

Fig. 16 Test setup components: Camera sees the scene shown in Fig. 17. 
Camera on the right is not used due to performance issues. ................21 

Fig. 17 System block diagram: All of the data collected are stored in laptop .22 

Fig. 18 Serial message structure from ocelli to microcontroller includes 2 
header, ocelli data, and gyro data bytes ...............................................22 

Fig. 19 Post-processing block diagram: Optic flow vectors are computed and 
extracted as a text file. The bag file is parsed, interpolated, and 
processed for data analysis...................................................................24 

Fig. 20 Motor velocity and gyro frequency response, as seen by Vicon motion-
detection system as input: Frequencies after 10 Hz were shown to 
prove the decrease in coherence out of controlled motion frequencies. 
Gyroscope shows a flatter magnitude response and higher coherence 
than motor velocity; therefore, it was chosen to be the ground truth. .26 

Fig. 21 Unbent photodiode output vs. motor shaft azimuthal position: 
Photodiode outputs increase as they pass by the light source. FOVs are 
not overlapping. ...................................................................................27 

Fig. 22 Bent photodiode output vs. motor shaft azimuthal position: Photodiode 
FOVs are partially overlapping, which is required for the ocellar 
sensor to work. In this (incorrect) configuration, there are angles where 
simulated roll motions do not produce any change in the photodiode 
outputs. .................................................................................................27 

Fig. 23 Ocelli in valid range: (above) symmetric photodiode raw output; 
(below) gyro and ocelli output for motor azimuthal position (–0.2 to 
0.2 radians). Ocelli output is in agreement with gyro in this range. ....28 

Fig. 24 Ocelli in invalid range: (above) asymmetric photodiode raw output; 
(below) gyro and ocelli output for motor azimuthal position (–1.2 to 
0.2 radians). Ocelli output is not in agreement with gyro in this 
range. ....................................................................................................29 

Fig. 25 Band-pass filter simulated AC transfer characteristic at 0.1–10 Hz: 
Magnitude increases with 20 dB/decade. Phase drops from –90° to –
125° at the end of 10 Hz. .....................................................................30 

Fig. 26 Right and left band-pass filter measured AC transfer characteristics at 
0.1–10 Hz: Magnitude and phase plots are in agreement with 
simulation (Fig. 28). .............................................................................30 

Fig. 27 LED sweeping: LED was taped to photodiode and power-supply 
signal is swept between 3 and 150 Hz. ................................................31 

Fig. 28 Right and left band-pass filter simulated transfer characteristics 
between 1 and 100 Hz; simulation is shown to compare with LED 
sweeping results in Fig. 32...................................................................32 



 

Approved for public release; distribution is unlimited. 
vii 

Fig. 29 Right band-pass filter measured transfer characteristics in response to 
LED chirp between 3 and 100 Hz: magnitude increases 20 dB/decade 
and phase drops from –105° to –180° (in agreement with simulation in 
Fig. 31). ................................................................................................32 

Fig. 30 Ocelli frequency response with respect to gyro as input: Frequencies 
after 10 Hz were shown to prove the decrease in coherence out of 
controlled motion frequencies. Ocellar magnitude is relatively flat, 
showing around 1dB difference from beginning to end. Phase delay 
reaches to –15° at 10 Hz. .....................................................................33 

Fig. 31 Time signals of gyro, ocelli, and optic flow in 0.5-, 1-, 5-, and 10-Hz 
windows; all sensor outputs are scaled to match gyro (rad/s) at each 
window .................................................................................................34 

Fig. 32 Frequency response of optic flow with respect to gyro as input: 
Overall magnitude decrease is 1.42 dB. Phase delay reaches to –35° at 
10 Hz. ...................................................................................................35 

Fig. 33 Ocelli–gyro mapping plot shows the expected ocelli output (V) for a 
given gyro measurement (rad/s). Ocelli output is monotonically 
increasing with increasing gyro values. ...............................................36 

Fig. 34 Optic flow frequency response with different frame rates, as seen by 
input gyro: As the frame rate decreases, roll-off at higher frequencies 
is steeper. Higher frame rate results in better coherence. Phase delay 
does not change due to frame rate. .......................................................37 

Fig. 35 Optic flow frequency response with different window sizes (w = 10, 
20, 30, 40), as seen by input gyro: Very small windows (10 × 10 pixel) 
result in erroneous magnitude response. Magnitude response and 
coherence improve as window size increases, phase delay remains the 
same. ....................................................................................................39 

Fig. 36 Optic flow frequency response with different window sizes (w = 50, 
60, 70), as seen by input gyro: After 50 × 50-pixel window, 
magnitude, phase, and coherence plots do not change. .......................39 

Fig. 37 Camera scene (10 × 10 feature points) ................................................40 

Fig. 38 Camera scene (4 × 4 feature points) ....................................................40 

Fig. 39 Optic flow frequency response with different number of feature points 
(f), as seen by input gyro: 2 × 2 feature points result in erroneous 
magnitude plot. As the feature points increase, magnitude and phase 
plots do not show much change; however, coherence improves. ........41 

Fig. 40 Light source input power vs. ocelli peak-to-peak amplitude: 
Luminance increase linearly increases the peak-to-peak amplitude. DC 
light source is specified in Table 3. .....................................................42 

Fig. 41 Bending illustration: The photodiodes should share an intersecting 
FOV toward the light source for the sensor to operate. Bending values 
30⁰ < β < 45⁰ were observed to give symmetric photodiode outputs. Β 
= 90⁰ completely overlaps the FOVs, without distinct horizons for 
each photodiode. ..................................................................................43 



 

Approved for public release; distribution is unlimited. 
viii 

Fig. 42 Illustration of complementary filter .....................................................45 

Fig. 43 Frequency response ocelli, optic flow, and their complementary 
fusion: Fourth-order Butterworth filter was used to high-pass ocelli 
and low-pass optic flow. The normalized cutoff frequency had to be 
kept very small to make use of ocelli’s relatively flat magnitude and 
less-delayed phase. Fused response shows coherence is better than 
optic flows. ...........................................................................................48 

Fig. 44 Frequency response ocelli, optic flow, and their weighted-average 
fusion: Ocelli and optic flow time-domain signals are combined to 
obtain a result close to ocelli. ...............................................................49 

Fig. 45 Magnitude response of ocelli with different luminance values and 
optic flow at 30 fps: Increasing luminance implies higher magnitude 
for ocelli (L1 < L2 < L3 < L4 < L5). Ambient luminance change brings 
adaptive gain necessity. Upper figure is the magnitude-scaled versions 
of ocelli response, not derived from real luminance values.................50 

Fig. 46 Hypothetical sensor decision approach: Adjust ocelli gain by 
continuously computing error between gyro/OF and ocelli; check if 
ocelli is valid to use by comparing gyro/OF; use ocelli if comparisons 
allow. ....................................................................................................51 

Fig. 47 Hypothetical ocelli gain adjustment approach: Gains > 1 are tuned by 
noninverting op-amp. Gains < 1 are tuned by voltage divider. The 
tuned outputs are compared with lookup table and microcontrollers 
iteratively tune the digital potentiometers until error threshold is low 
enough. .................................................................................................52 

 

List of Tables 

Table 1 Circuit components ................................................................................9 

Table 2 Band-pass filter characteristics ............................................................10 

Table 3 Experiment components.......................................................................20 
 
  



 

Approved for public release; distribution is unlimited. 
1 

1. Introduction 

1.1 Motivation 

The design of sensing mechanisms for small unmanned aircraft systems (sUAS) 
has many tradeoffs due to limited budgets for power consumption, size, weight, and 
the need for both speed and accuracy in a wide range of operating conditions. 
Traditionally, inertial measurement units (gyroscopes and accelerometers) are used 
to obtain velocity and position data. There has been a rapid evolution of these sensor 
systems in recent years toward integrated accelerometer and gyroscope packages 
that include both digitization and signal conditioning (e.g., filtering). As the vehicle 
sizes have continued to decrease, faster sensing is needed due to the increased 
susceptibility of the aircraft to tiniest of disturbances.  

Looking to nature, several species of flying insects have been demonstrated to 
possess exceptional stability and acrobatic capabilities that match the types of 
missions that engineers are trying to accomplish. They provide examples of robust 
stability given similar limitations of sensing and processing. The insect body is a 
multimodal sensor network. Information from visual, proprioceptive, tactile, and 
inertial receptors is collected to provide information about the state of the insect 
with respect to its environment.1 Instead of the digital architecture used in 
traditional sUAS, insects have analog connections between their sensory systems 
and their flight motor neurons. Analog architecture makes them capable of closing 
feedback loops at high speeds, becoming very useful for fast stabilization for 
sudden disturbances. Bio-inspired sensing techniques based on these species 
present an attractive way for microaerial-vehicle sensor design.  

Many flying insects employ 2 visual systems, the compound eyes and the ocelli 
(simple eyes). From the behavioral and electrophysiological experiments cited in 
the next sections, the compound eyes and ocelli are thought to work together. 
Overall, compound eyes are sensitive to a wide range of information, such as 
proximity to obstacles, relative velocity, and rotation rate.2–4 These tasks increase 
the information-processing time for the compound eyes, making them unable to 
provide fast responses for sudden disturbances. Insects have to balance themselves 
quickly to survive. Ocelli, responsible for a fewer number of tasks compared to 
compound eyes, have less processing time,5,6 which makes them favorable to detect 
sudden disturbances. Inspired by the complementary nature of ocelli and compound 
eyes, this report attempts to characterize the frequency response of an ocellar sensor 
and optic flow, and ultimately proposes the fusion of 2 sensors for low-cost, wide-
field, visual rotational motion sensing. 
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1.2 Contributions 

The contributions of this report are listed as follows: 

• The comparative open-loop frequency characterization of optic flow and a 
luminance-dependent analog rotation-rate sensor that is thought to mimic 
insect ocelli was conducted. 

• Sensitivity analysis was done to analyze the parameters that affect the optic 
flow and ocellar sensor performance in rotational motion. 

2. Background 

2.1 Structure and Function of Compound Eye 

The compound eyes and ocelli are shown in Fig. 1, head of a flying insect (Polistes).  
The structure of compound eyes (large, 2 on the sides) is seen in Fig. 2. The 
compound eyes are composed of units called ommatidia. Each ommatidium unit 
functions as a separate visual receptor, consisting of a lens, cornea, a crystalline 
cone, light-sensitive visual cells, and pigment cells (Fig. 3). There may be up to 
30,000 ommatidia in a single compound eye. The image perceived is a combination 
of inputs from ommatidia pointing at slightly different directions (as seen in Fig. 2, 
ommatidia units make up a conic surface). A mosaic-like vision of the environment 
is rendered.2,3 

 

Fig. 1 Insect compound eye and ocelli (image used with Wikimedia Commons 
permissions: https://commons.wikimedia.org/wiki/File:Polistes_ocelli.jpg) 
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Fig. 2 Structure of compound eye (image used with Wikimedia Commons permissions: 
https://commons.wikimedia.org/wiki/File:Insect_compound_eye_diagram.svg) 

 

Fig. 3 Structure of ommatidium (image used with permission from Cronodon.com: 
http://cronodon.com/Copyright.html) 

Vision process starts at ommatidia. Ommatidia photoreceptors capture patterns of 
luminance from the visual environment. The captured signal is conditioned through 
lamina plate. The output of lamina is thought to be the input to medulla.7,8 The 
medulla outputs optic flow-like patterns to lobula, and lobula processes these 
outputs.9–13 The output signals of lamina neurons are segregated into different 
pathways, performing functions such as color discrimination, motion detection, and 
intensity encoding. Neurons responding to motion are found in lobula. They are 
thought to receive inputs from hypothetical neural elements called Reichardt 
Detectors, or elementary motion detectors (EMDs), residing in medulla and 
calculating motion from the pixel-based information with a mechanism called 
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Reichardt correlation.14 This hypothetical mechanism is proposed to understand 
how a neuron, which is only receiving luminance input, is able to compute motion. 
Frye.15 depicts the key components of this algorithm, which are 2 inputs (red, as 
photoreceptors), a time delay on one input (d), and multiplication on correlated 
signals. 

1) Photons from a visual scene move from left to right. 

2) Photons activate the first receptor. 

3) The signal from the first receptor is delayed with d as the photons move to 
the second receptor. 

4) Photons activate the second photoreceptor. Both the delayed signal (from 
first receptor) and the undelayed signal (from second receptor) converge 
simultaneously onto a multiplication stage, producing a signal related to 
direction of motion. Conversely, photons passing from right to left will 
output zero for the opposite direction, since there is no delay component 
that will deliver simultaneous inputs to multiplication stage. 

2.2 Structure and Function of Ocelli 

Ocelli differ from the compound eye in that they have only a single lens covering 
an array of photoreceptors, as seen in Fig. 4. Ocelli are found in the frontal surface 
of the head of many insects. Ocelli tend to be larger in flying insects (bees, 
dragonflies, locusts) and are typically found as a triplet. Two lateral ocelli are found 
in the left and right of the head, while a median ocellus is directed frontally. 

 

Fig. 4 Ocellus cross section (image used with Wikimedia Commons permissions: 
https://commons.wikimedia.org/wiki/File:Insect_ocellus_diagram.svg; see Ref. 16) 
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Various studies have been conducted to reveal the function of ocelli for different 
insects. Although it is called an “eye”, ocellus is claimed to be underfocusing the 
image, hence showing hardly any image details for a locust. In contrast to the 
“underfocusing” information for the locust,17 suggests that the dragonfly ocellus, 
which is believed to be highly evolved, is able to detect some image details.  

It is also suggested that the temporal and spatial filtering characteristics of locust 
ocelli neurons are well suited to detect instability in flight.18,19 The stabilization in 
flight studies were summarized by Heisenberg and Reinhard,4 most of which 
studies are conducted by releasing dragonflies with ablated ocelli. Dragonflies 
show unstable flight attitudes without ocelli. Kastberger and Schumann20 evaluate 
the flight behavior of bees with and without occluded ocelli, stating that normal 
bees (without occlusion) show quicker flight behaviors. 

Another characteristic of ocelli is higher photic sensitivity, compared to the 
compound eye for locusts18 and bees.21 This information is useful if we think of the 
ocelli as integrators of the overall intensity or a blurred visual field. If the photic 
sensitivity is high, small changes in light intensity will be sensed. Taking into 
account that the images sensed by the ocelli are highly blurred, ocelli should be 
concerned with the overall image intensity. Studies of dragonflies22,23  and locusts24 
claim that ocelli are rotation detectors, important for gaze stabilization. Research 
by Schuppe and Hengstenberg25 also shows gaze stabilization cues by the ocelli. 
The beginning and end of daily activities of insects depend on light intensity. 
Studies of bees,23 crickets,26 and moths27–29  claim that the ocelli perceive low light 
intensity to control daily activities. 

Compared to ocelli, compound eyes offer a panoramic field of view (FOV) and 
high temporal resolution, with optic flow computation abilities.30–32 These features 
are beneficial for tasks like visually guided navigation (e.g., obstacle avoidance, 
landing strategy, saccade response, hovering strategy clutter response, collision 
response, and fixation strategy) each of which is described by Barrows et al.33 with 
specific test setups for bees and drosophilae. 

2.3 Prior Works Inspired by Insect Ocelli 

Because of the prominent computation advantages, simplicity, and applicability to 
small-scale world, ocelli-inspired vision sensors have been developed by many 
groups. These implementations mainly focus on closed-loop attitude control, 
outputting pitch, and roll angle. Neumann and Bülthoff34 present a simulation 
model of an autonomous agent flying through a virtual environment with a daylight 
sky model. It uses over 200 receptors to detect local intensities. These receptors are 
distributed evenly between adjacent directions on an agent body coordinate system. 
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The average intensity difference between 2 directions is computed to estimate the 
roll angle. Subsequently, a simulation of an eye model with a special receptor 
distribution was presented in a virtual environment in their 2002 report.35 The 
ocelli-like “wide-field measurement units” that use a locally weighted intensity as 
receptor response are subtracted in adjacent directions. Using an EMD and ocelli 
outputs, optimal receptive fields for attitude estimation, yaw rotations and nearness 
are derived. A 2003 study36 implements ocelli, haltere (an organ responsible for 
balance in flying insects), optic flow, and magnetic flow sensors for a 
micromechanical flying insect. These sensors were used to estimate body attitude 
relative to a fixed frame, body rotational velocities, obstacle avoidance, and 
heading adjustment, respectively. The ocelli consist of 4 photodiodes, arranged in 
a pyramidal configuration. The 2 output signals are obtained by subtracting the 
opposite photodiode outputs. Schenato et al.37 use this implementation and 
proposes a stabilizing attitude control law for a sinusoidal intensity function. Javaan 
et al.38 demonstrate an embedded implementation of ocelli-like sensor. It uses the 
difference between ultraviolet and green photodiode signals to obtain attitude 
estimation, stating that this reduces the biasing effect of clouds and the sun. Kerhuel 
et al.39 use a camera to track a reference heading point and perform gaze 
stabilization by using the difference between reference and instantaneous heading 
signal. Moore et al.40 use camera images that are classified by the intensity 
information in the YUV (luminance, blue, red) channel into sky and ground regions 
to estimate roll and pitch angles. Javaan and Akiko41 use 4 ultraviolet/green 
photodiode pairs to detect attitude angle and demonstrates roll attitude tracking on 
an aircraft. A 2014 study42 proposes an ocelli-based sensor, which is also used in 
this work, to output roll and pitch rate, rather than angle. This sensor was used for 
the frequency characterization in Section 3 of this report. 

3. Frequency-Domain Characterization of Ocellar Sensor and 
Optic Flow 

3.1 Introduction 

Gremillion et al.42 present experimental data that use the complementary response 
of an analog ocellar sensor and a commercial optic flow sensor. Inspired by this 
complementary response information and cues from insect ocelli and compound 
eye complementary task mechanism, we designed a test platform that generates 
rotational motion to characterize the frequency-domain response of both optic flow 
and an ocellar sensor, and gathers information from different sources such as motor 
controller, microcontroller, and gyroscope. The optic flow is computed using the 
images collected by a camera and fisheye lens. A microelectromechanical systems 
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gyroscope and a Vicon motion-detection system are used as ground truth. This 
section discusses the ocelli and optic flow frequency response characteristics and 
the performance parameters for the ocelli and optic flow computation. 

3.2 Ocellar Sensor 

The ocellar sensor (based on work by Gremillion et al.42) gives roll and pitch rate 
estimates using the luminance change sensed by right–left or front–back 
photodiode pairs. The luminance signals from left and right photodiodes are band-
pass filtered. The high-pass filter portion serves as the differentiator element to 
estimate rate information introduced by luminance change. The high-frequency 
cutoff was added to reject the flickering noise for indoor usage. The filtered signals 
from the photodiodes are antagonistically subtracted from each other (left–right or 
front–back) to obtain roll and pitch rate estimates. The overall circuit schematics 
are shown in Fig. 5 and the circuit components are listed in Table 1. 
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Fig. 5 Circuit schematics of the 3-stage ocellar sensor. TSL14S photodiode outputs are 
band-pass filtered and antagonistically subtracted. Pitch rate (front–back) is inverted for sign 
change. 
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Table 1 Circuit components 

Component Value/part number 
R1,3,9,11 1.1 kΩ 

R5,6,7,8,13,14,15,16,17,18,19,20 1 kΩ 
R2,4,10,12 20 kΩ 
C1,3,6,8 1 μF 
C2,4,7,9 470 nF 

Operational amplifier ISL28208 
photodiode TSL14S 

Vdd 5 V 
 
The circuit consists of 3 stages:  

1) Light-to-Voltage Conversion 

Light-to-voltage conversion by a TSL14S optical sensor43 that combines a 
photodiode and a transimpedance amplifier. The sensor has a wideband spectral 
response characteristics between 320 and 1050 nm. Its peak output is at 640 nm. 
The output voltage from this element is the electrical equivalent of luminance seen 
by the photodiode. 

2) Band-Pass Filtering 

This stage consists of an active bandpass filter with a designed high-pass cutoff at 
17 Hz and low-pass cutoff at 145 Hz (see Fig. 6). 

 

Fig. 6 Band-pass filter, with high-pass cutoff at 17 Hz and low-pass cutoff at 145 Hz 

The input–output relationship of a high-pass filter is modeled as 

 𝑉𝑉𝑜𝑜(𝑡𝑡) = −𝑅𝑅𝑓𝑓𝐶𝐶𝑠𝑠
𝑑𝑑
𝑑𝑑𝑡𝑡 �𝑉𝑉𝑖𝑖(𝑡𝑡)�     . (1) 
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The input voltage is the luminance value from the TSL14S package. The output 
voltage approximates the luminance time rate of change. The function of the low-
pass filter is to attenuate high-frequency noise. The final band-pass filter transfer 
function is in Eq. 2. 

 (𝑉𝑉𝑜𝑜(𝑠𝑠)
𝑉𝑉𝑖𝑖(𝑠𝑠) = 𝑠𝑠𝐶𝐶𝑠𝑠𝑅𝑅𝐹𝐹

𝑠𝑠2𝐶𝐶𝐹𝐹𝑅𝑅𝐹𝐹𝐶𝐶𝑆𝑆𝑅𝑅𝑆𝑆+𝑠𝑠(𝐶𝐶𝐹𝐹𝑅𝑅𝐹𝐹+𝐶𝐶𝑆𝑆𝑅𝑅𝑆𝑆)+1        . (2) 

The characteristic quantities of this second order transfer function are the low-pass 
cutoff frequency 𝜔𝜔𝐿𝐿, high-pass cutoff frequency 𝜔𝜔𝐻𝐻, and maximum input–output 
gain 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚, specified in Table 2. 

Table 2 Band-pass filter characteristics 

𝜔𝜔𝐿𝐿 =
1

𝑅𝑅𝐹𝐹𝐶𝐶𝐹𝐹
 

106 rad/s (16.9 Hz) 

𝜔𝜔𝐻𝐻 =
1

𝑅𝑅𝑆𝑆𝐶𝐶𝑆𝑆
 

909 rad/s (145 Hz) 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =
−𝑅𝑅𝐹𝐹

𝑅𝑅𝑆𝑆
 

-18.2 

3) Linear combination stage:  

This stage includes a difference amplifier to subtract right–left filter outputs and 
front–back filter outputs. The difference amplifier output from the right–left inputs 
estimates the roll rate. The difference amplifier output from the front–back inputs 
is inverted (for sign change) by an inverting amplifier. Inverting amplifier output 
estimates the pitch rate (see the blocks in Fig. 7). 

 

Fig. 7 Subtractor and inverter: Subtractor is used for antagonistic subtraction of filtered 
signals. Inverter is used for sign change for pitch rate. For equal resistors in both blocks, direct 
subtraction and direct inversion is satisfied. 

For R1,2,3,4,5,6 = 1kΩ, the outputs Vo_diff and Vo_inv are modeled as 

 𝑉𝑉𝑜𝑜_𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑖𝑖2 − 𝑉𝑉𝑖𝑖1 (3) 

 𝑉𝑉𝑜𝑜_𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖       . (4) 
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The bandpass filter was simulated (Fig. 8) using the macro model of the ISL28208 
operational amplifier in the Tina TI SPICE-based simulation program. The 
simulated circuit and alternating current (AC) transfer characteristics for 
frequencies between 1 mHz and 1 MHz are seen in Fig. 9. According to the 
simulation (due to the zero in the denominator of the transfer function) the 
amplitude is increased by 20 dB/decade until it hits the first pole. The high-pass  
–3 dB frequency is seen as 13 Hz. The maximum amplitude is 5.58 dB around 55 
Hz. The low-pass –3 dB frequency is seen as 175 Hz.  

 

Fig. 8 Simulated circuit in TI TINA simulation software 

 

Fig. 9 Band-pass filter simulation results: 13.78 Hz high-pass cutoff and 174 Hz low-pass 
cutoff is observed. Phase starts at –90° at 1 mHz and reaches to –270° at 100 kHz. 
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3.3 Mathematical Model for the Ocellar Sensor 

With reference to Fig. 10, the variables used to explain the ocellar sensor are as 
follows: 

γ: Azimuth angle of the photodiode 

𝜑𝜑: Angular position 

∅: Photodiode field of view 

𝜗𝜗 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �̇�𝛾: Angular speed 

𝐿𝐿(𝛾𝛾): Luminance, assume periodic 

𝛼𝛼: Light source field of luminance 

 

Fig. 10 Mathematical model and assumptions: Photodiode in rotational motion sees the 
arbitrary luminance pattern as its azimuthal angle varies 

The test setup has a DC spotlight source, which acts as “the sun”. For simplicity, 
luminance is modeled as a rectangular function with fixed edges from – 𝛼𝛼/2 to 𝛼𝛼/2. 
Photodiode FOV is also modeled as a rectangular function with edges at FOV 
edges, −∅/2 to ∅/2 

ℎ(∅, 𝛾𝛾): Photodiode field of view function modeled as a rectangular filter with 
edges at −∅/2 and ∅/2 

𝜌𝜌: Photodiode output (or signal input to bandpass filter) 
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*: convolution operation 

The photodiode integrates the luminance in its FOV, as ℎ(∅, 𝛾𝛾) 

 𝜌𝜌 = ∫ 𝐿𝐿(𝛾𝛾)𝑑𝑑𝛾𝛾 = 𝐿𝐿(𝛾𝛾)  ∗ ℎ(∅, 𝛾𝛾) = 𝐿𝐿ℎ(𝛾𝛾)𝐹𝐹𝐹𝐹𝐹𝐹    . (5) 

Let 𝐿𝐿ℎ(𝛾𝛾) be a photodiode output taken at the azimuth angle 𝛾𝛾. While the circuit is 
in rotational motion with angular speed 𝜗𝜗, this photodiode output becomes  
𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡) at time t. Thus, the photodiode output encodes both spatial (𝛾𝛾) and 
temporal (𝜗𝜗𝑡𝑡) information.  

 𝐿𝐿ℎ(𝛾𝛾) → 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡)     . (6) 

Since the photodiode output is in 2 domains, the Fourier transform with respect to 
both spatial and temporal variables should be taken in order to express it in Fourier 
domain. 

𝐿𝐿ℎ(𝛾𝛾, 𝑡𝑡): denotes the function in spatial and temporal domain 

𝐿𝐿ℎ�(𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑): denotes the Fourier transform 𝐿𝐿ℎ(𝛾𝛾, 𝑡𝑡) 

 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑�     . (7) 

Properties used: 

Shifting property in time/space and Fourier domain: 

 𝑥𝑥(𝛾𝛾 − 𝛽𝛽)
𝐹𝐹𝐹𝐹𝛾𝛾
�� 𝑋𝑋��𝑓𝑓𝑑𝑑�𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛾𝛾𝛽𝛽     . (8) 

Convolution: 

 𝑥𝑥(𝛾𝛾) ∗ 𝑦𝑦(𝛾𝛾)
𝐹𝐹𝐹𝐹𝛾𝛾
�� 𝑋𝑋��𝑓𝑓𝑑𝑑�𝑌𝑌��𝑓𝑓𝑑𝑑�     . (9) 

Taking the Fourier transform with respect to spatial variable 𝛾𝛾: 

 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾
�� 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝑒𝑒−𝑗𝑗2𝜋𝜋�𝜗𝜗𝑓𝑓𝛾𝛾�𝑑𝑑      . (10) 

Then, taking the Fourier transform with respect to temporal variable t gives the 
frequency domain of a rotational motion: 

 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑 , 𝑓𝑓𝑑𝑑� = 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑� (11) 

 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�     . (12) 
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This means that all the energy of the rotating photodiode output is contained in a 
plane of the spatiotemporal frequencies domain.44,45 The equation of this plane is 

 𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑 = 0     . (13) 

The rectangular luminance function can be described as 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡)~𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡(𝑥𝑥, 𝑡𝑡) 
with space and time axis. A rectangular pulse in space rest(x) has sinc form in 
frequency domain: 

 𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡(𝑥𝑥)
𝐹𝐹𝐹𝐹𝑥𝑥�� sin(𝜋𝜋𝑓𝑓𝑥𝑥)

𝜋𝜋𝑓𝑓𝑥𝑥
      . (14) 

The corresponding frequency spectrum appears as a cut of spatial spectrum46  
sin (𝜋𝜋𝑓𝑓𝑥𝑥)

𝜋𝜋𝑓𝑓𝑥𝑥
 by a wall of Dirac situated in the direction of  𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑦𝑦 = 0   

Overall, 

 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑 , 𝑓𝑓𝑑𝑑� = 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�      . (15) 

Equation 15 represents the photodiode output given as input to the bandpass filter 
in the circuit. Bandpass filtering is a temporal process; thus, the bandpass function 
has only temporal variable. Let the bandpass filter transfer function in time and 
Fourier domain be defined as 

 𝐵𝐵𝐵𝐵𝐹𝐹(𝑡𝑡)
𝐹𝐹𝐹𝐹𝑡𝑡�� 𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑)  𝑜𝑜𝑟𝑟 𝐵𝐵𝐵𝐵𝐹𝐹�(𝑠𝑠)     . (16) 

From the ocellar sensor section, 𝐵𝐵𝐵𝐵𝐹𝐹�(𝑠𝑠) is defined as 

 𝐵𝐵𝐵𝐵𝐹𝐹�(𝑠𝑠)  =  𝐹𝐹𝑜𝑜(𝑠𝑠)
𝐹𝐹𝑖𝑖(𝑠𝑠)

= 𝑠𝑠𝐶𝐶𝑠𝑠𝑅𝑅𝐹𝐹
𝑠𝑠2𝐶𝐶𝐹𝐹𝑅𝑅𝐹𝐹𝐶𝐶𝑆𝑆𝑅𝑅𝑆𝑆+𝑠𝑠(𝐶𝐶𝐹𝐹𝑅𝑅𝐹𝐹+𝐶𝐶𝑆𝑆𝑅𝑅𝑆𝑆)+1

       . (17) 

The output of the bandpass filter can be written as 

 𝐿𝐿ℎ,𝐵𝐵𝐵𝐵𝐹𝐹(𝛾𝛾, 𝑡𝑡) = 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡) ∗ 𝐵𝐵𝐵𝐵𝐹𝐹(𝑡𝑡)     . (18) 

The Fourier transform of the output becomes 

 𝐿𝐿ℎ,𝐵𝐵𝐵𝐵𝐹𝐹(𝛾𝛾, 𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ,𝐵𝐵𝐵𝐵𝐹𝐹� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑� (19) 

 𝐿𝐿ℎ(𝛾𝛾 − 𝜗𝜗𝑡𝑡) ∗ 𝐵𝐵𝐵𝐵𝐹𝐹(𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑)    . (20) 

This output represents the luminance output filtered by one photodiode. Assume 
another photodiode is has a different azimuth angle, 𝛾𝛾 − 𝛽𝛽, offset by 𝛽𝛽 from the 
first photodiode. The luminance perceived by it will be 
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 𝐿𝐿ℎ,𝛽𝛽(𝛾𝛾 − 𝛽𝛽 − 𝜗𝜗𝑡𝑡)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑 , 𝛽𝛽� (21) 

 𝐿𝐿ℎ,𝛽𝛽,𝐵𝐵𝐵𝐵𝐹𝐹(𝛾𝛾, 𝑡𝑡, 𝛽𝛽)  
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� 𝐿𝐿ℎ,𝛽𝛽,𝐵𝐵𝐵𝐵𝐹𝐹� �𝑓𝑓𝑑𝑑 , 𝑓𝑓𝑑𝑑 , 𝛽𝛽� (22) 

 𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑 , 𝛽𝛽� = 𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑�𝛿𝛿(𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛾𝛾𝛽𝛽      . (23) 

After bandpass filtering, the Fourier transform of the second output becomes 

 𝐿𝐿ℎ,𝛽𝛽,𝐵𝐵𝐵𝐵𝐹𝐹� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑 , 𝛽𝛽� = 𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛾𝛾𝛽𝛽𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑)   . (24) 

The difference amplifier implements direct subtraction between 2 bandpass filter 
outputs as the roll rate estimation. Let the roll rate be denoted as p(𝛾𝛾,t) 

 p(𝛾𝛾, t) = 𝐿𝐿ℎ,𝐵𝐵𝐵𝐵𝐹𝐹(𝛾𝛾, 𝑡𝑡) − 𝐿𝐿ℎ,𝛽𝛽,𝐵𝐵𝐵𝐵𝐹𝐹(𝛾𝛾, 𝑡𝑡) (25) 

 p(𝛾𝛾, t)
𝐹𝐹𝐹𝐹𝛾𝛾,𝑡𝑡
��� P��𝑓𝑓𝑑𝑑, 𝑓𝑓t� (26) 

P��𝑓𝑓𝑑𝑑, 𝑓𝑓t� = 𝐿𝐿ℎ,𝐵𝐵𝐵𝐵𝐹𝐹� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑� − 𝐿𝐿ℎ,𝛽𝛽,𝐵𝐵𝐵𝐵𝐹𝐹� �𝑓𝑓𝑑𝑑, 𝑓𝑓𝑑𝑑 , 𝛽𝛽� = 𝐿𝐿ℎ��𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑) −
𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑�𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛾𝛾𝛽𝛽𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑) = 𝐵𝐵𝐵𝐵𝐹𝐹�(𝑓𝑓𝑑𝑑)𝛿𝛿�𝑓𝑓𝑑𝑑 + 𝜗𝜗𝑓𝑓𝑑𝑑�[𝐿𝐿ℎ��𝑓𝑓𝑑𝑑� −
𝐿𝐿ℎ,𝛽𝛽� �𝑓𝑓𝑑𝑑�𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝛾𝛾𝛽𝛽]               .  (27) 

Thus, the circuit output depends on 

• Photodiode FOV 

• Bandpass filter characteristics 

• Luminance function 𝐿𝐿(𝛾𝛾) 

• Photodiode angular separation 𝛽𝛽 

The photodiode field-of-view and bandpass filter characteristics are inherent in the 
circuit under test, and these variables are fixed. We have control of the luminance 
function 𝐿𝐿(𝛾𝛾) and photodiode angular separation 𝛽𝛽. The luminance function is also 
dependent on the light intensity (or, the input power given to light source).  

3.4 Optic Flow Computation 

Optic flow is an approximation of apparent motion of brightness patterns observed 
when an observer (i.e., camera) is moving relative to the objects it images. Optic 
flow methods try to calculate where a pixel in Image A goes to in a consecutive 
Image B. In 2 dimensions, optic flow specifies how much a pixel of an image moves 
between adjacent series.47 The basis of optic flow is the brightness constancy 
equation, which eventually forms the 2-D motion constraint.  
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Assume that I(x,y,t) is the intensity of pixel positioned at location (x,y) in a frame 
taken at time t. In the frame taken at time (t+Δt), this pixel moves to the location 
(x+Δx, y+Δy) (see Fig. 11). 

 

Fig. 11 Optic flow vector for a pixel between 2 consecutive frames 

Assuming the brightness of the pixel does not change over time; 

 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦, 𝑡𝑡 + ∆𝑡𝑡)     . (28) 

Performing first-order Taylor Series expansion about I (x, y, t): 

𝐼𝐼(𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦, 𝑡𝑡 + ∆𝑡𝑡) = 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

∆𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

∆𝑦𝑦 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

∆𝑡𝑡 +
ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑜𝑜𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟 𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑠𝑠    .  (29) 

Assuming very small motion and ignoring the higher-order terms, 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

∆𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

∆𝑦𝑦 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

∆𝑡𝑡 = 0      . (30) 

Dividing everything by ∆𝑡𝑡: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

∆𝑚𝑚
∆𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

∆𝑦𝑦
∆𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

∆𝑑𝑑
∆𝑑𝑑

= 0      . (31) 

Denoting: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑚𝑚

= 𝐼𝐼𝑚𝑚 ,   𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝐼𝐼𝑦𝑦 ,   𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

= 𝐼𝐼𝑑𝑑 (32) 

∆𝑚𝑚
∆𝑑𝑑

= 𝜗𝜗𝑚𝑚         ∆𝑦𝑦
∆𝑑𝑑

= 𝜗𝜗𝑦𝑦 

                𝐼𝐼𝑚𝑚𝑉𝑉𝑚𝑚 + 𝐼𝐼𝑦𝑦𝑉𝑉𝑦𝑦 + 𝐼𝐼𝑑𝑑 = 0      . (33) 

Here, 𝑉𝑉𝑚𝑚 and 𝑉𝑉𝑦𝑦 are the x and y components of optic flow (for the motion described 
in Fig. 14). The equation can be written more compactly as  
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 �𝐼𝐼𝑚𝑚, 𝐼𝐼𝑦𝑦� ∙ �𝜗𝜗𝑚𝑚, 𝜗𝜗𝑦𝑦� = 𝐼𝐼𝑑𝑑 (34) 

 ∇𝐼𝐼 ∙ 𝜗𝜗 = −𝐼𝐼𝑑𝑑 (35) 

where ∇𝐼𝐼 = �𝐼𝐼𝑚𝑚, 𝐼𝐼𝑦𝑦� is the spatial intensity gradient and 𝜗𝜗 = �𝜗𝜗𝑚𝑚, 𝜗𝜗𝑦𝑦� is the velocity 
of the pixel (x,y) at time t. Equation 35 is called the 2-D motion constraint equation. 
This equation has 2 unknowns (𝜗𝜗𝑚𝑚, 𝜗𝜗𝑦𝑦), which relates to the aperture problem. If 
the motion detector’s aperture is much smaller than the contour it observes, it can 
only be sensitive to the component of the contour’s motion that is perpendicular to 
the edge of the contour. It is blind to any motion parallel to the contour. This is 
because the movement in this direction will not change the appearance of anything 
within the aperture. To find optic flow vectors, additional equations are needed. 
Many optic flow computation methods focus on additional constraints that attempt 
to recover the optic flow vectors. Lucas and Kanade48 assume that the displacement 
of the image contents between 2 frames is constant within a neighborhood of a point 
under consideration. Horn and Schunck49 assume smoothness in the flow over the 
whole image and prefers solutions that show more smoothness.  

For the Lucas–Kanade motion algorithm,48 the 2-D motion constraint equation is 
assumed to hold for all pixels within a window centered at p. This means that the 
motion constraint equation holds for all the pixels in a window with the same 
unknowns 𝜗𝜗 = �𝜗𝜗𝑚𝑚, 𝜗𝜗𝑦𝑦�. This set of equations brings an overdetermined system 
that has more equations than unknowns: 

𝐼𝐼𝑚𝑚 (𝑞𝑞1) 𝜗𝜗𝑚𝑚 + 𝐼𝐼𝑦𝑦 (𝑞𝑞1) 𝜗𝜗𝑦𝑦 = −𝐼𝐼𝑑𝑑 (𝑞𝑞1) 
𝐼𝐼𝑚𝑚 (𝑞𝑞2) 𝜗𝜗𝑚𝑚 + 𝐼𝐼𝑦𝑦 (𝑞𝑞2) 𝜗𝜗𝑦𝑦 = −𝐼𝐼𝑑𝑑 (𝑞𝑞2) 

… …                  … …                … … 
… …                  … …                … … 
… …                  … …                … … 

𝐼𝐼𝑚𝑚 (𝑞𝑞𝑛𝑛) 𝜗𝜗𝑚𝑚 + 𝐼𝐼𝑦𝑦 (𝑞𝑞𝑛𝑛) 𝜗𝜗𝑦𝑦 = −𝐼𝐼𝑑𝑑 (𝑞𝑞𝑛𝑛) 

where  𝑞𝑞1, 𝑞𝑞2, …..𝑞𝑞𝑛𝑛 are the pixels inside the window. In matrix form: 

𝐴𝐴𝜗𝜗 = 𝑏𝑏, where 

𝐴𝐴 =

⎣
⎢
⎢
⎡𝐼𝐼𝑚𝑚 (𝑞𝑞1) 𝐼𝐼𝑦𝑦 (𝑞𝑞1)

𝐼𝐼𝑚𝑚 (𝑞𝑞2) 𝐼𝐼𝑦𝑦 (𝑞𝑞2)
⋮ ⋮

𝐼𝐼𝑚𝑚 (𝑞𝑞𝑛𝑛) 𝐼𝐼𝑦𝑦 (𝑞𝑞𝑛𝑛)⎦
⎥
⎥
⎤
 

𝜗𝜗 = �
𝜗𝜗𝑚𝑚
𝜗𝜗𝑦𝑦

� 

𝑏𝑏 = �

−𝐼𝐼𝑑𝑑 (𝑞𝑞1)
−𝐼𝐼𝑑𝑑 (𝑞𝑞2)

⋮
−𝐼𝐼𝑑𝑑 (𝑞𝑞𝑛𝑛)

�          . 

Least squares principle can be applied to solve this overdetermined system: 

 𝐴𝐴𝐹𝐹𝐴𝐴𝜗𝜗 = 𝐴𝐴𝐹𝐹𝑏𝑏 (36) 
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 𝜗𝜗 = (𝐴𝐴𝐹𝐹𝐴𝐴)−1𝐴𝐴𝐹𝐹𝑏𝑏 (37) 

�
𝜗𝜗𝑚𝑚
𝜗𝜗𝑦𝑦

� = �
∑ 𝐼𝐼𝑚𝑚 (𝑞𝑞𝑖𝑖)2

𝑖𝑖          ∑ 𝐼𝐼𝑚𝑚 (𝑞𝑞𝑖𝑖)𝐼𝐼𝑦𝑦 (𝑞𝑞𝑖𝑖)𝑖𝑖

       ∑ 𝐼𝐼𝑦𝑦 (𝑞𝑞𝑖𝑖)𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖)𝑖𝑖 ∑ 𝐼𝐼𝑦𝑦 (𝑞𝑞𝑖𝑖)2
𝑖𝑖

�
−1

�
−𝐼𝐼𝑚𝑚 (𝑞𝑞𝑖𝑖)𝐼𝐼𝑑𝑑 (𝑞𝑞𝑖𝑖)
−𝐼𝐼𝑦𝑦 (𝑞𝑞𝑖𝑖)𝐼𝐼𝑑𝑑 (𝑞𝑞𝑖𝑖)

�     . (38) 

Optic flow vectors 𝜗𝜗𝑚𝑚 and 𝜗𝜗𝑦𝑦 are searched in a tracking window, and the best match 
is found using the least squares method. This system is solvable if 𝐴𝐴𝐹𝐹𝐴𝐴 is invertible. 
The eigenvalues of 𝐴𝐴𝐹𝐹𝐴𝐴 (𝜆𝜆1, 𝜆𝜆2 𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝜆𝜆1 > 𝜆𝜆2 ) should not be too small, and 𝐴𝐴𝐹𝐹𝐴𝐴 
should be well-conditioned (𝜆𝜆1

𝜆𝜆2
 should not be too large), so 𝜆𝜆1 > 𝜆𝜆2 should be 

somewhat similar to each other in magnitude. In other words, very small 
eigenvalues are interpreted as “flat surfaces”, and eigenvalues 𝜆𝜆1 ≫ 𝜆𝜆2 or 𝜆𝜆1 ≪ 𝜆𝜆2 
are interpreted as “edges”. Optimum eigenvalues should be large enough and have 
similar amplitude.50 

One drawback of the Lucas–Kanade algorithm is that it theoretically fails for large 
motions. If the motion is too large, higher order terms may dominate Eq. 29 (the 
first-order Taylor Series Expansion). Reducing the image resolution may solve this 
issue. A pyramidal approach is available to convert large motions to small 
motions.51 

Different optic flow computation methods can be described as either “dense” or 
“sparse.” From a performance point of view, dense computation methods (e.g., 
Horn and Schunck49 and Farnebäck52) that process all of the pixels in the image are 
slow for real-time applications. Instead, sparse techniques (i.e., Lucas and 
Kanade48) only process the pixels of interest. For real-time applications that use 
optic flow computation to feed the current state of an object back to a control loop, 
sparse techniques may be preferred over dense techniques due to faster 
computational performance (and, thus, higher sampling rate). In practice, we 
achieved 60 frames per second (fps) using the Lucas–Kanade algorithm but only 
13 fps for the Farneback algorithm (376 × 240 pixels 8-bit monochromatic image 
sequence). For this work, the Lucas–Kanade algorithm is used with predefined 
feature points distributed over the imagery. The feature points are the center pixel 
points to run the Lucas–Kanade algorithm for determining an optic flow vector. As 
the number of feature points increases, so does the number of optic flow vectors. 
The x-component of optic flow vectors are summed to obtain a single optic flow 
value. 

3.5 Experimental Setup 

In general, from Fig. 12, the optic flow experienced by an imager is33  

 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑟𝑟 𝐹𝐹𝐹𝐹𝑜𝑜𝑤𝑤 = −𝜔𝜔 + (𝑉𝑉/𝐷𝐷) 𝑟𝑟𝑜𝑜𝑠𝑠𝑐𝑐 (39) 



 

Approved for public release; distribution is unlimited. 
19 

where 𝜔𝜔 is the angular and 𝑉𝑉 is the translational velocity of the vehicle, D is the 
distance to an object, and 𝑐𝑐 is the angle between direction of travel and direction of 
object. If the translational component (V) is zero, optic flow is proportional to the 
angular velocity.  

 

Fig. 12 Optic flow during rotational and translational motion: without translational 
component (V), optic flow is an estimate of only angular velocity (ω) 

A mechanism was constructed to characterize optic flow and ocellar sensor over 
0.1–10 Hz rotational mechanical input. Figure 13 shows the illustration of the test 
setup; Fig. 14 shows the scene the camera sees; Table 3 shows the system 
components; and Figs. 15 and 16 show the general and close-up views of the 
components. The block diagram of the system is shown in Fig. 17. 

 

Fig. 13 Illustration of test setup: Light source has its own DC supply to avoid issues of 
flickering; information from camera, microcontroller unit (MCU), gyro, and analog-to-digital 
converter (ADC) are transferred to the host computer via a USB hub. 
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Fig. 14 Camera scene (376 × 240 pixel image): DC light source is not in the FOV of the 
camera, which is moving along the x-direction 

 

Table 3 Experiment components 

Equipment Model/manufacturer 
Light source LED1 OOWA-56 LED Video light 
Light-source 
supply 

GW-Instek-PSW-8027 Programmable switching DC power supply 

Motor Animatics Smartmotor SM2340D 
Motor supply PS42V6AG-110, 251 W, Moog, Animatics 
Signal generator Tektronix AFG3252 
Camera UEYE UI-1221LE-M-GL USB 2.0,752 × 480, CMOS mono, 87.2 fps, 8-

bit 
Lens Sunex DSL227 Miniature superfisheye lens, 180⁰ FOV 
Microcontroller Arduino UNO 
ADC MCP3008 8-channel 10-bit ADC with serial peripheral interface (SPI) 
USB hub Hosa Technology 
Gyroscope Pololu MinIMU-9 v3 chip contains L3GD20H 3-axis gyro 
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Fig. 15 Overall test setup: Ocellar sensor is positioned in front of light source. Motor is 
giving rotational motion to the setup along its shaft axis. The motor shaft is in vertical 
orientation, moving the components on it. 

 

Fig. 16 Test setup components: Camera sees the scene shown in Fig. 17. Camera on the right 
is not used due to performance issues. 
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Fig. 17 System block diagram: All of the data collected are stored in laptop 

All data are stored in a laptop running Ubuntu 14.04 environment. The ROS 
environment is used to implement robot software. ROS is an open-source network 
for writing robot software, including a collection of tools, libraries, and 
conventions. It allows for compact storage and data publishing from multiple 
peripherals. For this system, each component is represented by a different ROS 
“node” that allows for the compilation of multiple C++ files and stores data in a 
“bag” file. Once the data are collected, the bag file is “unbagged” and parsed to 
extract the data. 

To record the ocellar sensor analog voltage outputs, an ADC board is used. For 
ground truth, a 16-bit gyroscope is also used. The ADC board (MCP3008) 
communicates with the Arduino UNO microcontroller via SPI. Gyroscope 
communication is through interintegrated circuit technology (I2C). The 
microcontroller is programmed in C language. It reads ADC and gyroscope outputs, 
and parses the values into most significant (MSB) and least significant (LSB) bytes. 
Each sample consists of one MSB and one LSB (i.e., a 2-byte word). A message is 
created (see Fig. 18) with 2 header bytes to be sent to the laptop via serial 
communication at 115200 bps. A 15-ms delay is added between each byte sent to 
allow the receiver buffer to be cleared to avoid overwriting. 

 

Fig. 18 Serial message structure from ocelli to microcontroller includes 2 header, ocelli data, 
and gyro data bytes 
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The servo motor can be operated in either position or velocity mode. Velocity mode 
does not offer control in position. The motor is controlled by sending serial 
messages in Ani-Basic language. (The command information and serial 
communication are specified in the developer’s guide.53) For both position and 
velocity modes, specific trajectory files are created in MATLAB, including 
velocity/position trajectory (e.g., sine wave, square wave) and acceleration 
information. These trajectories are recorded as text files and read by a C++ code 
that communicates with the motor in Ani-Basic Language via serial communication 
at 115,200 bps. The commanded position, velocity, acceleration and real-time 
position, velocity, and acceleration values can be read back from the motor 
controller. Reading the motor values allowed us to validate the gyroscope output 
and to see whether the ocelli circuit is in desired position or not. To measure 
frequency response characteristics, concatenated sine waves are sent as velocity 
trajectory at different frequencies at velocity mode. To understand the ocellar 
sensor validity (explained in the next section), step inputs are sent at position mode. 

After storing the gyro, ocelli, Vicon, and raw imagery data in a bag file, post-
processing occurs (and is summarized in Fig. 19). Using the raw imagery in the bag 
file, optic flow field vectors are computed with another C++ code, using the 
OpenCV Lucas–Kanade algorithm. A text file is generated that includes the time 
stamps and optic flow x and y vectors for each image. For the other data, the bag 
file is unbagged and parsed to extract the ocelli, gyro, Vicon, motor data, and 
related timestamps. Optic flow vectors generated from the Lucas–Kanade 
algorithm are also parsed. The text file contains 60-fps optic flow information. To 
obtain lower frame rate results, the optic flow values are downsampled to factors 
of 60. Since we have data coming from different sources at different sampling rates, 
synchronization is necessary using a common time vector. A common time vector 
for all data is created with the lowest sampling time possible, which is the 
microcontroller sampling time, 0.003 s. All data are interpolated using this time 
vector.  

Since the communication modules are developed for embedded platforms, it will 
not take much effort to transfer this system to onboard computers used on quadrotor 
helicopters (quadcopters) through Secure Shell (SSH). The time synchronization 
can be carried out with firmware that force ones computer’s clock to follow another 
one (e.g., “chrony” synchronization for ROS). 
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Fig. 19 Post-processing block diagram: Optic flow vectors are computed and extracted as a 
text file. The bag file is parsed, interpolated, and processed for data analysis. 

3.6 Magnitude-Squared Coherence 

The spectral coherence is a measure that can be used to examine the relationship 
between 2 signals (or data sets). It is commonly used to estimate the power transfer 
between the input and output of a linear system. The magnitude-squared coherence 
between two signals x(t) and y(t) is defined as 

 𝐶𝐶𝑚𝑚𝑦𝑦(𝑓𝑓) = |𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)|2

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
  (39) 

where 𝐺𝐺𝑚𝑚𝑦𝑦(𝑓𝑓) is the cross-spectral density between x and y, and 𝐺𝐺𝑚𝑚𝑚𝑚(𝑓𝑓), 𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓) are 
the auto-spectral density of x and y, respectively. If the signals are ergodic 
(statistical properties can be deduced from a sufficiently long process) and the 
system function linear, the magnitude-squared coherence function estimates the 
extent to which y(t) may be predicted from x(t) by an optimum linear least squares 
function.54 The transfer functions and operations described for the mathematical 
model of the system, itself, and ocellar sensor transfer characteristics are linear. 
Thus, we expect the system to be linear. The magnitude-squared coherence is added 
to the frequency response plots as a performance parameter showing linearity. 

For an ideally linear system: 

 𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) ∗ ℎ(𝑡𝑡) ↔ 𝑌𝑌(𝑓𝑓) = 𝑋𝑋(𝑓𝑓)𝐻𝐻(𝑓𝑓) (40) 

 𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓) = |𝐻𝐻(𝑓𝑓)|2𝐺𝐺𝑚𝑚𝑚𝑚(𝑓𝑓) (41) 

 𝐺𝐺𝑚𝑚𝑦𝑦(𝑓𝑓) = |𝐻𝐻(𝑓𝑓)|2𝐺𝐺𝑚𝑚𝑚𝑚(𝑓𝑓) (42) 

 𝐶𝐶𝑚𝑚𝑦𝑦(𝑓𝑓) = |𝐻𝐻(𝑓𝑓)𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)|2

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
= |𝐻𝐻(𝑓𝑓)𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)|2

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)2|𝐻𝐻(𝑓𝑓)|2 = 1 (43) 
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where ℎ(𝑡𝑡) is the impulse response and 𝐻𝐻(𝑓𝑓) is its Fourier transform. 

Values of coherence satisfy 0 ≤ 𝐶𝐶𝑚𝑚𝑦𝑦(𝑓𝑓) ≤ 1. If there is a perfect linear relationship 
between x and y at a given frequency, 𝐶𝐶𝑚𝑚𝑦𝑦(𝑓𝑓) = 1. If 𝐶𝐶𝑚𝑚𝑦𝑦 is less than one but greater 
than zero, it is an indication that either noise is an inherent component of the system 
measurement, that the assumed function relating x(t) and y(t) is not linear, or that 
y(t) is producing output due to input x(t) as well as other inputs. If the coherence is 
equal to zero, it is an indication that x(t) and y(t) are completely unrelated. 

In the physical world, a perfect linear relationship is rarely realized. In practice, 
coherence values higher than 0.5 are acceptable for testing linear systems. For the 
experiments described later, the coherence values dip down at specific frequencies, 
around 1–2 Hz, for all measurements. Although the input sine waves includes these 
frequencies, it is believed that the motor was not successful at implementing these 
frequencies. All of the final measurements include coherence values higher than 
0.5 to be in a practically acceptable region. 

3.7 Ground Truth 

The first consideration for ground truth was the Vicon motion-detection system. 
However, its cameras strobe at frequencies 50–100 Hz and use reflected infrared 
light that is strobed from a ring of light-emitting diodes (LEDs) surrounding each 
camera. The bandpass filter circuit is able to pick up these frequency components 
of the infrared light, resulting in the corruption of the output signal. Alternative 
ground-truth options are the velocity readout from the servo motor controller and 
the gyroscope sensor. To choose one as ground truth, a chirp signal between 0.1 
and 10 Hz was given to the motor as velocity input, and the comparative responses 
of motor velocity readout and gyroscope were verified, with respect to the Vicon 
system as input. The ideal response should be a flat curve. As seen in Fig. 20, the 
gyroscope provides a more flat magnitude very close to 0 dB, and less phase delay 
than motor velocity. The magnitude-squared coherence plot indicates a linear 
input–output relationship at an existing frequency. The gyroscope coherence is 
higher than motor velocity across all test frequencies; therefore, it is regarded as 
ground truth for further analysis. The curves are shown up to 15 Hz to show the 
coherence decay outside the test frequencies. 
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Fig. 20 Motor velocity and gyro frequency response, as seen by Vicon motion-detection 
system as input: Frequencies after 10 Hz were shown to prove the decrease in coherence out 
of controlled motion frequencies. Gyroscope shows a flatter magnitude response and higher 
coherence than motor velocity; therefore, it was chosen to be the ground truth. 

3.8 Understanding Ocellar Sensor’s “Valid Range” 

The ocelli circuit is assumed to work under a specific luminance pattern to be an 
angular rate sensor. Assuming a bright sky and dark ground, when the photodiodes 
are looking to the sides, each of them sees a different horizon. One photodiode sees 
a brighter patch, while the other one sees a darker patch. For this algorithm to work, 
the luminance gradient from the sky to the ground should be constant and negative. 
We use a light source with a diffuser to create this artificial sky and horizons. The 
diffuser prevents the direct current (DC) source from acting as a point source, by 
helping to distribute the light intensity along the diffuser surface. This way, the 
light source acts as the sky, rather than the Sun. The photodiodes should see the 2 
edges of the source as 2 horizons. This way, when a rotational motion is applied, 
brighter-darker patch assumption will be satisfied. The photodiodes should be bent 
towards the source to intersect their fields of view. To understand whether an 
intersection is created, the azimuthal position of the motor is varied and the 
photodiode outputs are checked to see if they share an overlapping FOV. Figures 
21 and 22 show the unbent and bent raw photodiode outputs, with respect to the 
azimuthal position of the motor. A partially overlapping FOV was achieved by 
bending the photodiodes toward the light source. 
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Fig. 21 Unbent photodiode output vs. motor shaft azimuthal position: Photodiode outputs 
increase as they pass by the light source. FOVs are not overlapping. 

 

Fig. 22 Bent photodiode output vs. motor shaft azimuthal position: Photodiode FOVs are 
partially overlapping, which is required for the ocellar sensor to work. In this (incorrect) 
configuration, there are angles where simulated roll motions do not produce any change in the 
photodiode outputs. 
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Due to the small size of the light source and small FOV of the photodiodes (around 
90° each), the maximum swing of the motion stimulus needs to be small enough to 
ensure that the photodiode outputs are changing symmetrically with respect to each 
other. To understand the dynamic range circuit’s velocity, the azimuth was varied 
with small steps. For each position value, a target velocity was given to the motor 
and the circuit output was compared to the gyro output. For the region outside the 
light source dominance, the circuit outputs are not reliable. 

Figure 23 shows a valid region (azimuthal position changes from –0.2 to 0.2 
radians). In this range, photodiode outputs are symmetric to each other and the 
ocelli output directionally matches the gyro output. 

Figure 24 shows an invalid region (azimuthal position changes from –1.4 to –0.2 
radians). In this range, photodiode outputs are not symmetric to each other. Ocelli 
is not in agreement with gyro. Using this data, the maximum displacement for the 
ocellar circuit is determined to be 1 radian. All of the following characterizations 
are done in this valid region. 

 

Fig. 23 Ocelli in valid range: (above) symmetric photodiode raw output; (below) gyro and 
ocelli output for motor azimuthal position (–0.2 to 0.2 radians). Ocelli output is in agreement 
with gyro in this range. 
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Fig. 24 Ocelli in invalid range: (above) asymmetric photodiode raw output; (below) gyro 
and ocelli output for motor azimuthal position (–1.2 to 0.2 radians). Ocelli output is not in 
agreement with gyro in this range. 

3.9 Ocellar Sensor Frequency Characterization 

Frequency characterization is done in 2 ways. First, to confirm the proper operation 
of the bandpass circuit, the raw photodiode output is used as input and filtered 
signal is used as output. Although the bandpass circuits can operate up to higher 
frequencies, the motor stimulus is limited to 10 Hz; only 0.1–10 Hz data are 
obtained for circuit’s motion characterization. To demonstrate that the photodiode 
and bandpass filter combination can operate at higher frequencies, an LED was 
driven by a signal generator between 3 and 100 Hz. 

A second frequency characterization was done to compare the optic flow and ocelli 
outputs with the gyro as ground truth. This provided us with information about how 
well the sensors operate within the motion frequencies, in comparison to each other 
with the same inputs. 

3.9.1 Circuit Frequency Characterization 

A chirp signal is given as a motor velocity command. Figure 25 shows the simulated 
circuit output, and Fig. 26 shows the right and left circuit frequency responses. 
Between 0.1 and 10 Hz, the circuit simulation shows 20 dB/decade increase in 
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magnitude, starting from –38 dB to 1 dB. The phase delay starts from –90° and 
reaches to –125° at 10 Hz. The data from both photodiodes show the similar 
response. Right-circuit magnitude starts from –38 dB and reaches to –2 dB.  
Left-circuit magnitude starts from –38 dB and reaches to 0 dB. Phase response 
reaches to –140° and –124° for right and left, respectively, after starting from –90°. 

 

Fig. 25 Band-pass filter simulated AC transfer characteristic at 0.1–10 Hz: Magnitude 
increases with 20 dB/decade. Phase drops from –90° to –125° at the end of 10 Hz. 

 

Fig. 26 Right and left band-pass filter measured AC transfer characteristics at 0.1–10 Hz: 
Magnitude and phase plots are in agreement with simulation (Fig. 28). 
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To demonstrate that the photodiode and bandpass filter combination can operate at 
higher frequencies, an LED was taped to one photodiode (see Fig. 27). The 
electrical signal (sine wave, voltage-controlled) from the signal generator is swept 
from 3 to 100 Hz. Figure 28 shows the AC characteristics simulation from 3 to  
100 Hz. The gain starts from –8.59 dB and reaches to 5.6 dB at 50 Hz, then it 
decreases to 4.74 dB at 100 Hz. The phase starts from –101° at 3 Hz, decreasing to 
–205° at 100 Hz. Figure 29 shows the frequency response of the circuit from the 
photodiode input from LED to the filtered output. The magnitude response starts 
from –10.25 dB and reaches to –0.29 dB at 50 Hz. Then it decays to –1.281 dB at 
98.6 Hz. The phase response starts from –105.8° at 3 Hz, decreasing to –180.5° at 
98.76 Hz. Qualitatively, circuit simulation is close to actual data. Circuit simulation 
results in 103° phase delay, and data result in 75° phase delay. The circuit gain 
increases by 14 dB up to 50 Hz, and real data gain increases by 10 dB. 

 

Fig. 27 LED sweeping: LED was taped to photodiode and power-supply signal is swept 
between 3 and 150 Hz. 
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Fig. 28 Right and left band-pass filter simulated transfer characteristics between 1 and 100 
Hz; simulation is shown to compare with LED sweeping results in Fig. 32 

 

Fig. 29 Right band-pass filter measured transfer characteristics in response to LED chirp 
between 3 and 100 Hz: magnitude increases 20 dB/decade and phase drops from –105° to –
180° (in agreement with simulation in Fig. 31).
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3.9.2 Sensor vs. Ground Truth Frequency Characterization 

To characterize ocellar sensor frequency response with respect to the gyroscope 
(acting as the ground truth velocity), concatenated sine waves were given as 
velocity input. The operation was performed in the valid angle range previously 
described. The ocelli output is a voltage value. Its magnitude is scaled to match 
with the gyroscope. This frequency response is from gyroscope as input, to the full 
ocellar sensor as output. Within the test frequencies, the ocellar sensor shows a 
relatively stable magnitude around 0 dB. The phase response is degrading over the 
frequency range. Figure 30 shows the ocellar sensor frequency response. From 0.1 
to 1 Hz, there is almost no phase delay between ocelli and gyro. After 1 Hz, ocelli 
shows a phase delay of approximately 15°. The data after 10 Hz were not taken into 
account, since the input stimulus cannot exceed 10 Hz. The components at higher 
frequencies are due to mechanical noise inherent in the motor. Coherence dips are 
happening at the same frequencies with the other experiments; therefore, it is 
believed that the motor was not able to implement those frequency components. 
Ocelli always shows a coherence above 0.5, which is practically acceptable. 

 

Fig. 30 Ocelli frequency response with respect to gyro as input: Frequencies after 10 Hz 
were shown to prove the decrease in coherence out of controlled motion frequencies. Ocellar 
magnitude is relatively flat, showing around 1dB difference from beginning to end. Phase 
delay reaches to –15° at 10 Hz. 
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Figure 31 shows the time-domain signals comparing gyro, ocelli, and optic flow in 
0.5 Hz, 1 Hz, 5 Hz, and 10 Hz windows, respectively. The outputs of optic flow 
and ocelli are scaled to match gyro output (rad/s) at each window. The ocelli and 
optic flow are in agreement with gyro signal at each frequency window. 

 

Fig. 31 Time signals of gyro, ocelli, and optic flow in 0.5-, 1-, 5-, and 10-Hz windows; all 
sensor outputs are scaled to match gyro (rad/s) at each window 

Figure 32 shows the optic flow frequency characterization for 60 fps data, using 
Lucas–Kanade with 25-pixel window size and 16 feature points (4 × 4). The entire 
magnitude response is very close to flat. There is almost no phase delay until 1 Hz, 
at which point it reaches –35° at 10 Hz. Taking into account that these optic-flow 
data are obtained with the highest frame rate, the magnitude response is expected 
to degrade as the frame rate decreases. Although the optic flow frequency response 
remains approximately flat with these settings, the frequency response is related to 
the motion algorithm, frame rate, and window size, as will be seen next. Varying 
these parameters, a worse high-frequency response will be obtained, which is the 
real-life case with flying vehicle onboard computers. All in all, these data show the 
maximum bandwidth the optic flow can achieve within the test limitations.  
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Fig. 32 Frequency response of optic flow with respect to gyro as input: Overall magnitude 
decrease is 1.42 dB. Phase delay reaches to –35° at 10 Hz. 

3.10   Ocellar Sensor–Gyro Voltage-Velocity Mapping 

To understand the expected ocelli output (in volts) for a given gyro (rad/s) value, 
the data for ocelli and gyro across 1–10 Hz test frequencies were combined. With 
0.005 rad/s intervals, expected ocelli output (V) and gyro (rad/s) values were 
calculated (16 data points for both). These points were fitted to a line of equation 

 𝑓𝑓(𝑥𝑥) = 𝑂𝑂1 ∗ 𝑥𝑥 + 𝑂𝑂2 (44) 

where 𝑂𝑂1 = 0.164 and 𝑂𝑂2 = 2.489, R2 = 0.9902. Figure 33 shows the mapping 
plot. It shows that the ocelli output is monotonically increasing with increasing gyro 
amplitude, implying linearity. The standard deviation (error bars) is large because 
of the discretization limit of the ADC. The ADC has 4.8 mV resolution, and the 
overall motion is within 140 mV. 
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Fig. 33 Ocelli–gyro mapping plot shows the expected ocelli output (V) for a given gyro 
measurement (rad/s). Ocelli output is monotonically increasing with increasing gyro values.  

3.11  Performance-Related Parameters 

3.11.1  Frame Rate 

Frame rate is the frequency at which the camera displays consecutive images. From 
Eq. 2, the Lucas–Kanade algorithm extensively uses spatial and temporal 
derivatives, using numerical differentiation. To give an example, let f be a given 
function that is only known at a number of isolated points. The problem of 
numerical differentiation is to compute an approximation of the derivative f’ of f 
by suitable combinations of the known values of f.  

Assuming that function f is differentiable, the derivative f’(a) for some real number, 
a, is defined as 

 𝑓𝑓′(𝑎𝑎) = lim
ℎ→0

�𝑓𝑓(𝑚𝑚+ℎ)−𝑓𝑓(𝑚𝑚)
ℎ

�        . (45) 

For very small h, this derivative can be approximated by 

 𝑓𝑓′(𝑎𝑎) ≈ 𝑓𝑓(𝑚𝑚+ℎ)−𝑓𝑓(𝑚𝑚)
ℎ

       . (46) 
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This approximation involves error, and this error increases as h increases. To 
demonstrate this, one can use f(x) = sinx, f’(x) = cosx and compute the error 
between f’(x) = cosx and f’(x)~ 𝑓𝑓(𝑚𝑚+ℎ)−𝑓𝑓(𝑚𝑚)

ℎ
. The error will increase as the h values 

increase.  

Figure 34 shows the frequency response of 60, 30, and 20 fps optic flow results 
from gyro as input and from optic flow as output. As frame rate decreases, optic 
flow magnitude response rolls off steeper and reaches to –2.64, –4.92, and –9.62 
dB at 10 Hz for 60, 30, and 20 fps, respectively. For all frame rates, the phase delay 
remains constant. For 0.1–1.1 Hz, there is almost no phase delay between optic 
flow and gyroscope. After 1.1 through 10 Hz, the phase delay increases and reaches 
–35°. The coherence of 20 fps measurement is the worst, as increasing frame rate 
increases the coherence, as well. 

 

Fig. 34 Optic flow frequency response with different frame rates, as seen by input gyro: As 
the frame rate decreases, roll-off at higher frequencies is steeper. Higher frame rate results in 
better coherence. Phase delay does not change due to frame rate. 

Besides numerical differentiation error, another explanation lies under the Taylor 
series approximation used to derive the motion constraint equation. Taking only the 
first-order components assumes that the change in motion is small. However, when 
the change is larger, the second-order components will come into play and the 
motion constraint equation will no longer hold. When the motion is too fast for a 
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given frame rate, the spatial/temporal estimate assumption breaks down. In 
practice, this resulted in an optical flow measurement of erroneously low 
magnitude.  

Aliasing is another way to look at this roll-off.  When the frame rate decreases, 
there are less optic flow vectors to sample the given sine wave. These vectors may 
be computed at random points of the sine wave, not exactly catching the peak 
amplitudes. If the frame rate is higher, more optic flow points will result in a more 
accurate sine wave, catching the peaks.  

Scheider et al.55 study the optic flow outputs as the angular rate changes. According 
to their findings for 2 different optic flow algorithms, optic flow matches with real 
rate for slow motions for a specific resolution. As the rate increases, optic flow 
cannot capture images often enough to get an accurate estimate of angular rate. 
Optic flow first draws a unity line with real rate, then this line starts showing a fixed 
rate; finally, it rolls completely off to zero.  

To overcome this, one may increase the frame rate, or, use a smaller image (e.g., 
binned by 2) to double the frame rate. With the current setup, a 752 × 480-pixel 
image can go up to 20 fps. When the image is binned by 2, the frame rate increases 
to 60 fps for a 376 × 240-pixel image. This solution will result in losing maximum 
image resolution. 

3.11.2 Window Size 

The Lucas–Kanade algorithm assumes that the motion is the same for all pixels in 
a window of w by w pixels. This tracking window size determines the number of 
equations (hence, optic flow vector candidates) to be used in the least squares 
method. Assuming constancy in motion, more optic flow vectors will give more 
data points to determine the best fit for optic flow. However, if the window is too 
large, a point may not move like its neighbors. 

Figures 35 and 36 show the window size versus the optic flow frequency response. 
Changing window sizes significantly affected the coherence plot. Phase delay 
remained the same for all window sizes. Magnitude is the most erroneous for the 
10- and 20-pixel (10 × 10, 20 × 20) window sizes; however, it stays relatively the 
same for the rest. The coherence is the worst using 10 pixels. It improves as the 
window size increases from 20 to 40 pixels, and remains the same after 40 pixels 
through 70 pixels.  
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Fig. 35 Optic flow frequency response with different window sizes (w = 10, 20, 30, 40), as 
seen by input gyro: Very small windows (10 × 10 pixel) result in erroneous magnitude 
response. Magnitude response and coherence improve as window size increases, phase delay 
remains the same. 

 

Fig. 36 Optic flow frequency response with different window sizes (w = 50, 60, 70), as seen 
by input gyro: After 50 × 50-pixel window, magnitude, phase, and coherence plots do not 
change. 
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3.11.3 Feature Points 

Feature points are the number of center pixels located on each image. Around these 
center pixels, optic flow vectors are calculated within the window size. The number 
of feature points determines the number of optic flow vectors computed. The 
plotted optic flow is only the x component of average optic flow field. The feature 
points are equally distributed over x and y dimensions of the image. The spacing 
between them is 

 𝑥𝑥 (𝑜𝑜𝑟𝑟 𝑦𝑦)𝑠𝑠𝑂𝑂𝑎𝑎𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑑𝑑𝑑𝑑ℎ(𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑑𝑑)
𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑖𝑖𝑜𝑜 𝑜𝑜𝑓𝑓 𝑓𝑓𝑖𝑖𝑚𝑚𝑑𝑑𝑛𝑛𝑜𝑜𝑖𝑖 𝑝𝑝𝑜𝑜𝑖𝑖𝑛𝑛𝑑𝑑𝑠𝑠 𝑚𝑚𝑎𝑎𝑜𝑜𝑛𝑛𝑖𝑖 𝑚𝑚 (𝑜𝑜𝑜𝑜 𝑦𝑦)  (47) 

where x feature points are referred to as x-by-x center pixels. Figures 37 and 38 
show the image scene with 10 × 10 and 4 × 4 feature points, respectively. 

 

 

Fig. 37 Camera scene (10 × 10 feature points) 

 

Fig. 38 Camera scene (4 × 4 feature points) 
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Figure 39 shows the optic flow frequency response with respect to different number 
of future points. The 2 × 2 feature points result in the most erroneous optic flow 
magnitude. The magnitude response improves after 2 × 2 and stays relatively the 
same from 4 × 4 to 15 × 15 feature points. Similar to window size result, the change 
in phase remains the same between feature points. The coherence is the worst using 
2 × 2 feature points. Increasing the feature points improves the coherence; however, 
coherence remains the same after 8 feature points. This means that a sufficient 
number of optic flow vector data points are accumulated to make the best fit for 
optic flow with 8 × 8 feature points. More feature points bring redundant data 
points. 

 

Fig. 39 Optic flow frequency response with different number of feature points (f), as seen by 
input gyro: 2 × 2 feature points result in erroneous magnitude plot. As the feature points 
increase, magnitude and phase plots do not show much change; however, coherence improves. 

3.11.4 Luminance Intensity 

DC light input power is varied to understand how the luminance intensity changes 
the ocellar circuit output. The circuit outputs at the same frequency were compared. 
Figure 40 shows the peak-to-peak amplitudes with respect to input power, for 10 
Hz motion. As the power increases, amplitude increases, as expected. The fitted 
line has coefficients of p1 = 0.088, p2 = 0.006. This brings a necessity for “adaptive 
gain” for different luminance values in the environment. 
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Fig. 40 Light source input power vs. ocelli peak-to-peak amplitude: Luminance increase 
linearly increases the peak-to-peak amplitude. DC light source is specified in Table 3. 

3.11.5 Photodiode Bending 

The photodiodes should be bent towards the light source to share an intersecting 
FOV and to satisfy that one’s output is increasing while the other’s is decreasing. 
The bending determines how much their FOVs intersect and how much they are 
seeing the edges of the light source as 2 different horizons. The reference for 
bending is seen in Fig. 41. If β = 0°, no common luminance is shared. If β = 90°, 
their FOVs completely intersect and no symmetric change with respect to each 
other is observed. Assumption is satisfied for β values between 0 and 45°, 
specifically β = 30°, 40°, 45° raw outputs are observed to be symmetric to each 
other. For β ~ 90°, the same sine wave shape is seen at the same instant. 
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Fig. 41 Bending illustration: The photodiodes should share an intersecting FOV toward the 
light source for the sensor to operate. Bending values 30⁰ < β < 45⁰ were observed to give 
symmetric photodiode outputs. Β = 90⁰ completely overlaps the FOVs, without distinct 
horizons for each photodiode. 

3.12   Test Setup Limitations 

The maximum motion frequency achieved with the motor is around 10 Hz for 
velocity mode. For position mode, the frequency is even lower, at 2 Hz. Above 
these frequencies for related modes, the motor does not follow the input 
position/velocity. The higher frequency components in the plots are from inherent 
mechanical vibrations of the motor and the flickering of laboratory lights at 60 Hz 
or its harmonics at 120–180Hz. The camera used has a theoretical claim of 87 fps 
frame rate. However, when this frame rate is used, frame drops are observed. Optic 
flow calculation is highly corrupted by frame drops. Frame drops were minimized 
with 60 fps frame rate.  

Also, using 2 cameras for covering more field was our first attempt. This 
configuration needs triggering to satisfy that the cameras are taking photo at the 
same time. Triggering was achieved with 2 PX-4 Inertial Measurement Units 
working as master and slave. However, data-transfer limitation from USB port 
reintroduced the lower frame rate problem; hence, frame drops stopped after 
switching to one camera at the same frame rate. To allow for triggering, frame rate 
had to be decreased to 20 fps, which limited the optic flow bandwidth. To show the 
maximum achievable bandwidth for optic flow with this configuration, only one 
camera is used with 60 fps, 376 × 240 pixels image.   
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4. Sensor Fusion 

As described in Section 3, ocellar sensor shows a relatively stable magnitude across 
the test frequencies. Optic flow frequency response can keep up with the ocellar 
sensor for 60 fps data. As the frame rate decreases, optic flow magnitude plot rolls 
off. At high motion frequencies (where the optic flow information degrades), it is 
possible to use the ocellar circuit. This section first presents the biological 
background for sensor fusion in insect compound eyes and the ocelli. Then the 
general fusion approaches from the literature are discussed. Finally, the optic flow 
and the ocellar sensor data are fused to demonstrate the high-frequency roll-off 
compensation of optic flow, using the ocellar sensor. 

4.1 Biological Background for Sensor Fusion 

From the behavioral studies, ocelli and compound eyes are thought to work together 
for flight stabilization abilities.21,22,24 In the blowfly, it is previously studied that 
lobula plate tangential cells estimate the self-motion by taking local motion 
information from compound eyes. One of the cells that are reported to respond optic 
flow information is a tangential cell, called V1.56 Parsons et al.57 reports that V1 
responds to ocelli stimulus as well. The response increases with the rate at which 
the light intensity changes, implying that V1 might be encoding angular velocity 
information, as well as optic flow information. Haag et al.58 experiments that a 
prominent descending neuron called DNOVS1 receive input from 2 sources—from 
the photoreceptors of compound eye via large-field motion sensitive cells and from 
photoreceptors of ocelli via ocellar interneurons. Parsons et al.59 reports that lobula 
plate neurons combine inputs from both ocelli and compound eyes. Ocellar 
responses encode information in 3 axes, whereas compound eyes encode in 9. This 
reveals that ocelli are only able to detect rotation around 3 axes, thus offering less 
specificity with respect to compound eye. If we assume a direct summation of ocelli 
and compound eye neuronal signals, this might help the flight behavior in 3 axes 
(since there will be more information for 3 axes, from both compound eyes and 
ocelli). However, for the other 6 axes, ocelli might output “zero” and the fused 
response from both compound eye and ocelli might degrade the flight behavior, 
which seems like counterintuitive. Parsons et al.59 suggest that each VS neuron is 
tuned to the ocellar axis closest to its compound eye axis, combining the speed of 
ocelli with the accuracy of compound eyes without compromising either. 

Having said that ocelli are faster than compound eyes, what is the quantitative 
difference between these latencies? The response latency depends strongly on 
experimental parameters, such as contrast and frequency of a moving stimulus. For 
example, with increasing contrast and high frequency, latency decreases. 
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Moreover, temperature changes and the age of the fly affect the latency.60 Safran et 
al.61 report that motion sensitive neuron H1 (compound eye neuron) transmits 
signals in 20–30 ms. Parsons et al.59 measures 6 ms for ocellar latency, which 
indicates a significant reduction when compared to compound eyes. For high 
frequency disturbances, low-latency ocellar neurons will be needed.  

4.2 Fusion Approaches 

In motion detection and control systems, especially in flight control and inertial 
navigation, different kinds of sensors are used on one platform. When measuring a 
particular variable, a single type of sensor may not be able to meet all the required 
performance specifications.  For example, both accelerometer and gyroscope data 
can be used to compute angles. Since an accelerometer gives acceleration, angles 
can be reconstructed from accelerometer output by 2-fold integration. Similarly, a 
gyroscope gives velocity information and one integration would be enough. The 
accelerometer is known to be good for “long term”, meaning that it does not drift. 
A gyroscope is good for “short term”; it is known to have poor drift characteristics 
but is able to give a fast response. An ideal combination would be a fast transient 
response with no drift, by combining good qualities from 2 measurements. 

Theoretically, if a time-varying signal is applied to both a low-pass and high-pass 
filter with unity gain, the sum of the filtered signals should be identical to the input 
signal. (See Fig. 42.) Assume that x and y are noisy measurements of some signal 
z, with x employing low-frequency noise and y employing high-frequency noise. 
Z’ is the estimate of the signal z produced by the complementary filter.  

 

Fig. 42 Illustration of complementary filter 

Practically, complementary and Kalman filters provide the fusion of 2 signals. The 
Kalman filter, working in time domain, needs statistical description of the noise 
corrupting the signals. This noise is assumed to be Gaussian white noise. 
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Complementary filters approach the problem from the frequency domain, and they 
are generally used for the fusion systems that do not deal with noise. For digital 
implementation, the complementary filter has considerable advantage over the 
Kalman filter, as Kalman gains are not computed for each state. Therefore, after 
determining the filter coefficients for complementary filter, the update rate of 
complementary filter can be higher than Kalman filter for each loop. This is an 
important consideration for the applications in which high-rate loop closure is 
necessary.  

4.3 Previous Sensor Fusion Implementations 

Sensor fusion is governed by complementary and Kalman filtering in the literature, 
generally for virtual reality applications in computer vision and attitude control. 
Vision-based information helps avoiding the errors resulting from integrating the 
inertial sensors over time. Vaganay et al.62 fuse 2 accelerometers and 3 gyroscopes 
for an indoor mobile robot to obtain attitude information using an extended Kalman 
filter. Foxlin63 fuses gyroscopes and inclinometer for head-tracking using a Kalman 
filter. You and Neumann64 integrate high-frequency stable gyroscope and low-
frequency stable vision-based tracking using a Kalman filter for an augmented 
reality. Wu et al.65 use an extended Kalman filter that takes information from 
camera images, inertial measurement unit, and magnetometers to estimate the pose 
of the vehicle. Cheviron et al.66 fuse accelerometer, gyroscope, and vision sensors 
to obtain position, velocity, and attitude information for an unmanned aerial vehicle 
(UAV), using a nonlinear complementary filter framework. Bleser and Stricker67 
use an extended Kalman filter to fuse vision-based output for slow movements and 
inertial sensor output for fast movements for virtual reality applications. Conte and 
Doherty68 use a Kalman filter to fuse data from 3 accelerometers and 3 gyroscopes 
with a position sensor for UAV navigation. Position sensor input is either from a 
global positioning system (GPS), when GPS is available, or from vision system 
(feature tracking) when GPS is not available. Schall et al.69 fuse GPS data, inertial 
sensor data, and camera image data for global pose information for augmented 
reality. Inertial and GPS data are fused using a Kalman filter. Achtelik and Weiss70 
use an extended Kalman filter to fuse air pressure sensor and vision framework 
(computationally expensive) with inertial sensor data to handle the fast movements 
and disturbances of the micro-air vehicle. Campolo et al.71 propose a 
complementary filter to fuse magnetometer, accelerometer, and gyroscope data for 
attitude estimation. In this section, the time domain signal of both ocellar and optic 
flow outputs are combined to extend the optic flow frequency response. 
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4.4 Ocellar Sensor-Optic Flow Fusion Approach 

Previous results show that optic flow shows roll-off at high frequency motion. On 
the other hand, the ocellar sensor shows a relatively flat response at high 
frequencies. This experiment uses a camera capable of 87 fps, in theory, and a  
high-speed Ubuntu laptop. Even with this configuration, the real frame rate 
obtained from the camera becomes 60 fps because of data transfer limitations of 
USB busses. The frame rates higher than 60 fps result in dropped frames and 
corrupt the optic flow output.  

Commercially available single-board computers (e.g., Raspberry Pi71) allow for 
lower frame rates. Practically, Raspberry Pi 2 is limited to 15–20 fps for the same 
Lucas–Kanade algorithm used in this experiment. A more expensive model, Odroid 
XU4,72 is capable of 60 fps; however, its cost doubles Raspberry Pi ($75 vs. $35). 
A relatively cheap single-board computer will have a limited optic flow 
computation bandwidth. On the other hand, the ocellar sensor offers a fast, cheap, 
and low-power alternative to optic flow computation. It has a relatively flat 
magnitude and phase response, and it is an attractive alternative for rotational 
motion. However, its performance is highly dependent on the luminance. It assumes 
a constant luminance gradient from sky to ground. Optic flow computation does 
not have such an assumption, and it only needs a texture around it. Moreover, this 
setup uses a 180°-FOV lens to obtain wide-field motion. To have more FOV, the 
number of cameras may be increased; this will, however, create the necessity for 
simultaneous triggering of the 2 cameras. When this setup is used with 2 cameras, 
the triggering reduces the camera frame rates down to 20 fps. This reduction is 
expected to be more using a cheaper configuration. Lower frame rate will introduce 
a lower optic flow bandwidth, making the optic flow sensing incapable of 
performing at high frequencies. To compensate for the high-frequency roll-off of 
optic flow, ocellar sensor data are fused with optic flow. Figure 43 shows the 
complementary fusion.  The optic-flow data are low-pass filtered with a fourth-
order Butterworth filter. The inverse of this filter, a fourth-order Butterworth high-
pass filter, with the same cutoff frequency is used to high-pass filter the ocelli data. 
The reason for using a fourth-order Butterworth filter instead of single-pole high- 
and low-pass filters is that it resulted in a better coherence. Single-pole filter 
combinations decreased the coherence values at high frequencies. The fusion 
operation increased the bandwidth and decreased the phase delay of optic flow.  
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Fig. 43 Frequency response ocelli, optic flow, and their complementary fusion: Fourth-
order Butterworth filter was used to high-pass ocelli and low-pass optic flow. The normalized 
cutoff frequency had to be kept very small to make use of ocelli’s relatively flat magnitude and 
less-delayed phase. Fused response shows coherence is better than optic flows. 

An even more direct way is taking the weighted average of optic flow and ocelli. 
While this approach will not provide fully low-pass filtered optic flow and high-
pass filtered ocelli, if the ocelli weight is kept high, the result will be very similar 
to optic flow. Figure 44 shows another fusion that implements 

 𝑎𝑎 ∗ 𝑜𝑜𝑟𝑟𝑒𝑒𝐹𝐹𝐹𝐹𝑖𝑖 + (1 − 𝑎𝑎) ∗ 𝑜𝑜𝑂𝑂𝑡𝑡𝑖𝑖𝑟𝑟 𝑓𝑓𝐹𝐹𝑜𝑜𝑤𝑤 (48) 

where a = 0.9. Magnitude, phase, and coherence plots result in-between ocelli and 
optic flow, very close to ocelli. 
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Fig. 44 Frequency response ocelli, optic flow, and their weighted-average fusion: Ocelli and 
optic flow time-domain signals are combined to obtain a result close to ocelli. 

However, complementing both ocelli and optic flow readings gives a result close 
to ocelli. It assumes that the ambient luminance distribution is as calibrated in this 
experiment. We know that the ocelli magnitude increases with increasing 
luminance. This peak-to-peak amplitude is a linear function of input light source 
power, as seen in Section 3. Additionally, ocellar sensor has to be in a “valid range”. 
All in all, optic flow is immune to luminance intensity. It gives a flat magnitude 
response at low frequencies. Ocelli, however, is vulnerable to luminance intensity 
and it does not show a roll-off in magnitude as optic flow shows. It would be ideal 
to combine the good properties of both measurements real-time. Ocelli magnitude 
plot with respect to increasing luminance intensity should result in a plot like Fig. 
45. Optic flow magnitude plot shows low-pass characteristics.  
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Fig. 45 Magnitude response of ocelli with different luminance values and optic flow at 30 
fps: Increasing luminance implies higher magnitude for ocelli (L1 < L2 < L3 < L4 < L5). Ambient 
luminance change brings adaptive gain necessity. Upper figure is the magnitude-scaled 
versions of ocelli response, not derived from real luminance values. 

A mechanism that allows for switching from one mode to another is desired to 
decide which sensor to use. This switching mechanism may be a gyroscope. The 
gain adjustment may be done with a feedback from ocelli output that is 
continuously compared with gyroscope/optic flow output. If a valid region for 
ocelli is found, ocelli is preferred over optic flow due to its high speed. A 
hypothetical iterative approach is shown in Fig. 46. First, ocelli gain is adjusted 
with the use of a lookup table and the error between ocelli and gyro is computed. If 
this error is below a threshold, the gain adjustment is satisfied. After this, the 
validity of ocelli output is confirmed by computing the error between the gyro and 
optic flow. If these comparisons allow, ocelli is preferred to be used for closed-loop 
rate stabilization. If not, either gyro or optic flow is used. Ocelli gain can be adjusted 
with digital potentiometers and an operational amplifier. The digital potentiometers 
are controlled from microcontroller. For a gain less than 1, a voltage divider reduces 
the ocelli output. For a gain greater than 1, a noninverting amplifier increases the 
ocelli output. This output is continuously fed back to the microcontroller to 
compare the gyroscope and ocelli error to find a new gain value from the lookup 
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table and adjust the potentiometers accordingly. Figure 47 shows the possible 
circuit configuration with microcontroller. 

 

Fig. 46 Hypothetical sensor decision approach: Adjust ocelli gain by continuously 
computing error between gyro/OF and ocelli; check if ocelli is valid to use by comparing 
gyro/OF; use ocelli if comparisons allow. 
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Fig. 47 Hypothetical ocelli gain adjustment approach: Gains > 1 are tuned by noninverting 
op-amp. Gains < 1 are tuned by voltage divider. The tuned outputs are compared with lookup 
table and microcontrollers iteratively tune the digital potentiometers until error threshold is 
low enough. 

5. Conclusion and Future Work 

5.1 Conclusion 

Frequency-domain characterization of optic flow and ocellar sensors are presented. 
The advantages and disadvantages for both sensing mechanisms are discussed. In 
summary: 

• Ocellar sensor shows a relatively flat magnitude response and less phase 
delay than optic flow. 

• Ocellar sensor is attractive for high-rate loop closure since it is cheaper and 
faster than high-quality cameras. 

• The displacement dynamic range of the ocellar sensor is observed to be 1 
radian with this setup, due to the small size of the light source. Using a 
larger light source, higher displacements may be achieved. 

• The frequency dynamic range of ocellar sensor is observed to be up to  
10 Hz with motion and up to low-frequency cutoff without motion. Ten 
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hertz is a limitation from mechanical test setup; higher motion frequencies 
are expected due to the circuit simulation and LED experiment results. For 
outdoor experiments, the low-frequency cutoff of the band-pass circuit can 
be eliminated since there is no flickering issue outdoors. 

• Ocellar sensor magnitude shows a linear relationship with luminance 
intensity. Since it is highly luminance-dependent, an adaptive gain 
calibration is necessary for usage with different luminance levels. 

• Ocellar sensor shows monotonic increase with increasing gyro values. 

• Optic flow magnitude rolls off at high frequencies. Specifically, 60 fps can 
keep up with ocelli response. Thirty and 20 fps show roll-off at 7 Hz. Less 
frame rate shows steeper roll-off. Phase delay increases with increasing 
frequency. All frame rates tested show the same phase delay across all 
frequencies.  

• Optic flow algorithm parameters (feature points, window size) affect the 
coherence. No significant change in magnitude and phase plots is observed, 
except for erroneous magnitudes for extremely small window sizes or 
feature points. 

5.2 Future Work 

Several potential directions may be taken to extend the work of this report. Taking 
the characterization results, performance parameters, and hypothetical sensor 
fusion suggestions into account, a closed-loop optic flow and ocellar-based fusion 
may be implemented to perform real-time stabilization and disturbance rejection. 
Multiple ocellar sensors with lenses may be placed in an array-like fashion on a 
flying vehicle to extend the current FOV of the ocellar sensor. The outputs of 
ocellar sensor may be matched with predefined patterns to inform where exactly 
the disturbance occurs. 

The combination of optic flow computations and ocellar sensor gives both slow and 
fast alternatives for horizon detection and angular-rate sensing.  

The coherence in ocellar sensor and optic flow frequency response plots show dips 
at specific frequencies. The reason for these dips could not be identified during the 
experiments. If these dips were caused form the motor mechanical noise, both the 
gyroscope and the ocellar sensor should be able to pick the mechanical noise up, 
resulting in the same motion for both of them. Also, the motor resonance and 
gyroscope resonance possibilities have been eliminated after confirming the time-
domain signals with the ground truth. It is presumed that the ocellar sensor may be 
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slightly modulating the input sine wave at these frequencies. The experiments can 
be repeated by using another ocellar sensor board and/or another motor. 

To compensate for the optic flow’s slow rate, another direction might be converting 
the optic flow-ocelli system to a fully analog scheme. Combining both sensors in 
analog domain might give the complementary approach in a compact, fast, and 
lightweight way. While digital optic flow computation has the freedom of easy 
adaptation and reconfiguration with different, sophisticated, and robust algorithms, 
subthreshold analog very-large-scale integration (VLSI) optic flow designs are 
much smaller, lightweight, low power, and faster. One may argue that the  
one-board computers are already lightweight. However, decrease in size and weight 
are extremely important factors for micro aerial vehicle design. VLSI allows the 
photodiodes and computation circuitry to be fabricated on a piece of silicon; 
therefore, it is very suitable for vision-based sensing. 

Insect ocelli have high responsivity to ultraviolet wavelengths. A completely 
different direction might be taking the ocellar sensor outside, using the sky–ground 
discrimination in ultraviolet wavelengths. The wideband photodiodes in current 
circuit can be replaced with ultraviolet photodiodes. A detail to consider is the 
ultraviolet intensity difference in sky and ground in different times of the day and 
different weather conditions. On a sunny day, the results show that sky is brighter 
than ground in ultraviolet. On a cloudy day, it can be the opposite. While the 
constant and negative luminance gradient may not be satisfied for all cases, specific 
weather conditions (e.g., sunny day, no clouds) can allow for outdoor use.  We have 
built the ultraviolet version of the ocellar sensor and tested outside. A main problem 
is the uneven ultraviolet intensity coming to both ultraviolet photodiodes. On 
cloudy days, there is nearly no ultraviolet difference between sky and the ground; 
it is thought that the clouds are blocking the ultraviolet portion in the sunlight. On 
sunny days, one photodiode should not see the high intensity created by the sun and 
should only have the portion coming from the sky. The instantaneous displacement 
of the clouds and the wind are also factors that create the uneven ultraviolet 
intensity on both photodiodes. While these cases make it hard to test outside, we 
have seen with some datasets that it agrees with gyroscope output.  
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2-D 2-dimensional 

AC alternating current 

ADC analog-to-digital converter 

DC direct current 

EMD elementary motion detector 

FOV field of view 

fps frames per second 

GPS global positioning system 

LED light-emitting diode 

LSB least significant bytes 

MCU Microcontroller Unit 

MSB most significant bytes 

SPI serial peripheral interface 

sUAS small unmanned aircraft systems 

UAV unmanned aerial vehicle 

VLSI very-large-scale integration 
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